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Abstract

Representations for the Riesz kernel jx � yj�s ðs40Þ are presented, which lead to new

interpretations of the energy of measures. It is shown that the surface measure on the unit

sphere in Rd solves a minimal energy problem independent of s (but intimately related to Riesz

s-energy) and that n points on the unit circle with minimal discrete Riesz energy are nth roots

of unity, unique up to rotation. Moreover, the energy of signed measures is estimated in terms

of their discrepancy.
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1. Introduction

One motivation for the research presented in this paper is the problem of

distributing n points equally on the unit sphere in R3; which has applications in
various fields of mathematics, such as spherical approximation, numerical
integration, quasi-Monte-Carlo methods, and discrete wavelet analysis, to mention
only a few (see, for instance, [3,5,11,18,20]). It turned out that—among other—a
‘‘bionic’’ principle can give a reasonable solution from the point of view of
constructive approximation: Taking the locations of electrons, which are restricted
to the sphere (the conductor) and find themselves in a state of (global) minimum
Coulomb energy, then these points are asymptotically well-distributed, even in the
quantitative sense of discrepancy. This means that compared to the surface measure

E-mail address: mario.goetz@ku-eichstaett.de.

0021-9045/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0021-9045(03)00031-5



each part of the surface essentially gets its ‘‘most fair’’ share of points [7]. Moreover,
it has been numerically shown that the distribution of such electrons follows certain
geometric principles. The corresponding Dirichlet cells appear to partition the sphere
into hexagons and pentagons. For instance, the Dirichlet cells of 32 electrons in
equilibrium constitute the pattern of the standard soccer ball, and their dual structure
is the one of the recently discovered C60 molecule (Buckminster fullerene) [27].

Yet, the principles working here have not been fully understood. There is still
necessary a deeper analysis of the relations between the different concepts of energy,
geometry, and equidistribution. The starting point for this paper are integral

representations for the Riesz kernel jx � yj�s in Rd ðs40Þ: One interesting point of
the corresponding formulas is that they factor into integrands independent of s;

which are integrated against the weight dr=r1þs: With this approach, the Riesz energy
of a measure (or a signed measure) can be directly related to a square integral over
the charges that this measure associates with dilated, translated and rotated copies of
any fixed set. In particular, the energy of a signed measure—under certain
restrictions—can be estimated in terms of the discrepancy of the two measures,
based on homothetic images of the aforementioned given set.

For the case of the sphere it is shown that the normalized surface measure solves a
minimal energy problem related to this new interpretation of Riesz energy.
Moreover, it is shown that n points on the unit circle minimizing discrete energy
with respect to a kernel, which is a decreasing convex function of arclength are given
by the nth roots of unity and—in case of strict convexity—are unique up to rotation.
In particular, this applies to the Riesz kernel with exponent s40:

2. Notation and conventions

Let dX2: Throughout this paper, Bðx; rÞ stands for the open ball in Rd of radius

r40; centered at x; and ld for the Lebesgue measure on Rd : We denote the volume of

the unit ball Bð0; 1Þ by vd and the surface of the unit sphere Sd�1 :¼ fxARd : jxj ¼ 1g
by od : Here and in what follows, j 	 j stands for the Euclidean norm. Denote by s the

surface measure on Sd�1; normalized so that sðRdÞ ¼ 1: Moreover, diamðAÞ and

distðz;AÞ are the diameter of a set ACRd and the Euclidean distance from the point

zARd to A; respectively. #A is the number of elements of A: Let SOðdÞ denote the

group of rotations on Rd and H the Haar (unit) measure on SOðdÞ: Finally, KCRd

will be any (fixed) bounded measurable set with ldðKÞ40:

3. The Riesz kernel

In this section, we present two integral representations of the classical Riesz
kernel, which are fundamental for the subsequent considerations regarding Riesz
energy.
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Proposition 1. Let s40: Then for x; yARd ; xay;

1

jx � yjs ¼ CðK ; s; dÞ
Z

N

0

Z
SOðdÞ

ldððx þ rUðKÞÞ-ðy þ rUðKÞÞÞ dHðUÞ dr

rdþ1þs
;

where, setting 1 :¼ ð1; 0;y; 0ÞARd ; the constant CðK ; s; dÞ is given by

CðK ; s; dÞ�1 ¼
Z

N

0

Z
SOðdÞ

ldðtUðKÞ-ð1þ tUðKÞÞÞ dHðUÞ dt

tdþ1þs
:

Proof. Since distance and Lebesgue measure are invariant under translation, we may
assume that x ¼ 0: Moreover, w.l.o.g. y ¼ ðjyj; 0;y; 0Þ by rotational invariance of
the respective quantities. Now, for r40 and UASOðdÞ;

ldðrUðKÞ-ðy þ rUðKÞÞÞ ¼ jyjdld r

jyj UðKÞ- y

jyj þ
r

jyj UðKÞ
� �� �

;

so that making the change of variable t ¼ r=jyj;Z
N

0

Z
SOðdÞ

ldððx þ rUðKÞÞ-ðy þ rUðKÞÞÞ dHðUÞ dr

rdþ1þs

¼
Z

N

0

Z
SOðdÞ

jyjdlðtUðKÞ-ð1þ tUðKÞÞÞ dHðUÞ jyj dt

ðtjyjÞdþ1þs

¼ CðK ; s; dÞ�1 1

jyjs ¼ CðK ; s; dÞ�1 1

jx � yjs: &

Example. Taking K ¼ Bð0; 1Þ in Proposition 1 it follows that

1

jx � yjs ¼ CðBð0; 1Þ; s; dÞ
Z

N

0

ldðBðx; rÞ-Bðy; rÞÞ dr

rdþ1þs
: ð1Þ

Now,

ldðBð0; rÞ-Bð1; rÞÞ ¼
2vd�1rd

R 1

1=ð2rÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
Þd�1

dt; if r41=2;

0; if 1=2Xr40:

(

Consequently,

CðBð0; 1Þ; s; dÞ�1 ¼ 2vd�1

Z
N

1=2

Z 1

1=ð2rÞ
ð1� t2Þðd�1Þ=2

dt
dr

r1þs

¼ 2sþ1

s
vd�1

Z 1

0

ð1� t2Þðd�1Þ=2
ts dt:

In particular, for s ¼ 1; CðBð0; 1Þ; 1; dÞ ¼ dþ1
4vd�1

: If, in addition, d ¼ 3; then

CðBð0; 1Þ; 1; 3Þ ¼ 1=p and (1) reduces to a formula for the Coulomb kernel which
appears in [6]. &
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There is also a trivial integral representation of the Riesz kernel, which we state
here for later reference.

Proposition 2. Let s40: Then for x; yARd ; xay;

1

jx � yjs ¼ s

Z
N

jx�yj

dr

r1þs
:

4. The Riesz energy of measures

Let s40 and let m be a (positive Borel-) measure on Rd : Its Riesz s-energy is given
by

EsðmÞ :¼
Z Z

1

jx � yjs dmðxÞ dmðyÞ:

By Proposition 1, changing the order of integration, the Riesz energy can be written
in the form

EsðmÞ ¼ CðK; s; dÞ
Z

N

0

Z
SOðdÞ

Z
Rd

½mðz þ rUðKÞÞ�2 dldðzÞ dHðUÞ dr

rdþ1þs
:

In particular, taking K :¼ Bð0; 1Þ this formula simplifies to

EsðmÞ ¼ CðBð0; 1Þ; s; dÞ
Z

N

0

Z
Rd

½mðBðz; rÞÞ�2 dldðzÞ
� �

dr

rdþ1þs
: ð2Þ

From Proposition 2, making again a change in the order of integration, there follows
that

EsðmÞ ¼ s

Z
N

0

Z
mðBðx; rÞÞ dmðxÞ

� �
dr

r1þs
: ð3Þ

Roughly speaking, relations (2) and (3) express that Riesz energy is determined by
the charges that the measure associates with balls, where balls with smaller radius
contribute more.

5. The energy of signed measures

Suppose n is another (Borel-) measure on Rd such that the mixed energy

Es½m; n� :¼
Z Z

1

jx � yjs dmðxÞ dnðyÞ
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is finite. Then the energy

Esðm� nÞ :¼
Z Z

1

jx � yjs dðm� nÞðxÞ dðm� nÞðyÞ

¼EsðmÞ � 2Es½m; n� þ EsðnÞ

of the signed measure m� n is well-defined, as we will henceforth always assume. By
Proposition 1,

Esðm� nÞ ¼CðK ; s; dÞ
Z

N

0

Z
SOðdÞ

Z
Rd

½ðm� nÞðz þ rUðKÞÞ�2 dldðzÞ dHðUÞ


 dr

rdþ1þs
: ð4Þ

Later on, we will give an interpretation of (4) in terms of discrepancy. This
formula should also be compared to Stolarsky’s ‘‘invariance principle’’ [21,22] for
measures on the unit sphere: Suppose there are given n (distinct) points x1;y; xn on

Sd�1 and denote by mn the atomic unit measure associating equal mass 1=n with each

xi: Let g be an integrable, (say) non-negative function and, with p0 :¼
ð1; 0;y; 0ÞASd�1; look at the kernel

rðx; yÞ :¼
Z

SOðdÞ

Z /UðyÞ;p0S

/UðxÞ;p0S
gðrÞ dr

�����
����� dHðUÞ ðx; yASd�1Þ:

Here, /	; 	S stands for the standard inner product in Rd : Note that r is non-singular

for x ¼ y: Consider the spherical caps Cr :¼ fpASd�1: /p; p0Sprg: Then Theorem 2
of [22] says thatZ Z

rðx; yÞ dmn dmn �
Z Z

rðx; yÞ ds ds

¼ 2

Z 1

�1

gðrÞ
Z

SOðdÞ
½ðmn � sÞðUðCrÞÞ�2 dHðUÞ dr:

We continue pointing out that (4) immediately leads to the following well-known
conclusion on the positive definiteness of the energy functional [17].

Corollary 3. The s-energy of a signed measure is positive, unless it is the zero-measure.

We conclude this section with the following consequence of (3). Compared to (4)
this formula lacks a non-negative integrand:

Esðm� nÞ ¼ s

Z
N

0

Z
ðm� nÞðBðx; rÞÞ dðm� nÞðxÞ

� �
dr

r1þs
: ð5Þ
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6. Minimal energy on the sphere

This section is devoted to the minimal energy problem for measures on the unit

sphere Sd�1 in Rd : It is well-known that for 0osod; the normalized surface measure

s is the unique mass with minimal Riesz s-energy among all unit measures on Sd�1:
But, as the following result shows, s is the unique solution to a more general
extremal problem, independent of s; which by (2) implies the minimal Riesz s-energy
property.

Proposition 4. Let r40: For each unit measure m on Sd�1;Z
Rd

½sðBðx; rÞÞ�2 dldðxÞ

¼
Z
Rd

½mðBðx; rÞÞ�2 dldðxÞ �
Z
Rd

½ðm� sÞðBðx; rÞÞ�2 dldðxÞ: ð6Þ

Corollary 5. The normalized surface measure s is the unique unit measure on Sd�1 for

which the L2-norm of x/sðBðx; rÞÞ is minimal for each r40:

Remark. The ‘‘defect’’
R
Rd ½ðm� sÞðBðx; rÞÞ�2 dldðxÞ on the right-hand side of (6) can

be interpreted as an L2-discrepancy of the signed measure m� s:

Proof of Proposition 4. Let m and n be unit measures on Sd�1: ThenZ
Rd

mðBðx; rÞÞnðBðx; rÞÞ dldðxÞ

¼
Z

N

0

odrd�1

Z
Sd

mðBðrz; rÞÞnðBðrz; rÞÞ dsðzÞ dr: ð7Þ

Now, fix r40 and write

/m; nS :¼
Z

Sd

mðBðrz; rÞÞnðBðrz; rÞÞ dsðzÞ:

Since z/sðBðr z; rÞÞ and y/sðBðy
r;

r
rÞÞ are constant on Sd�1; we have

/m; sS ¼ sðBðr1; rÞÞ
Z

Sd�1

mðBðrz; rÞÞ dsðzÞ

¼ sðBðr1; rÞÞ
Z

Sd�1

s B
y

r
;

r

r

� �� �
dmðyÞ

¼ sðBðr1; rÞÞ
Z

Sd�1

s B
y

r
;

r

r

� �� �
dsðyÞ

¼/s; sS:
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Hence,

/s; sS ¼ 2/m; sS�/s; sS ¼ /m; mS�/m� s; m� sS;

which by virtue of (7) implies the assertion of Proposition 4. &

For completeness, we formulate the aforementioned result on minimal s-energy on
the sphere as a corollary to Proposition 4.

Corollary 6. For 0osod; the normalized surface measure on Sd�1 is the unique unit

measure on Sd�1 with minimal Riesz s-energy. For sXd; there is no measure on Sd�1

with finite Riesz s-energy.

7. Discrete energy

One approach to the problem of distributing points uniformly on the sphere
mentioned in the introduction is to approximate the surface measure by point masses
which solve a discrete energy problem and thus mimic the minimal energy property
of the surface measure.

We begin by stating the minimal discrete energy problem in a general form.

Definition. Let E be an infinite subset of Rd ; F : E 
 E- %R a kernel. Let nX2:
Points x1;y; xnAE with the property thatX

i;j¼1
iaj

Fðxi; xjÞ ¼ inf
y1;y;ynAE

X
i;j¼1
iaj

Fðyi; yjÞ

are called nth F-Fekete points on E:

The classical notion of Fekete points refers to the Newtonian kernel Fðx; yÞ ¼
jx � yj2�d for dX3 and the logarithmic kernel Fðx; yÞ ¼ �logjx � yj for d ¼ 2: It is
well-known that for compact E of positive capacity, the corresponding points are
asymptotically distributed according to the equilibrium distribution of E: Moreover,

for curves ECR2 or smooth surfaces ECRd ðdX3Þ the order of convergence can be
quantified in terms of discrepancy (see [2,7] for details and [8] for an overview).

From Proposition 2, changing the order of integration, we have the following
representation for the discrete Riesz energy of points.

Proposition 7. Let y1;y; ynARd : Then

Xn

i;j¼1
iaj

1

jyi � yjjs
¼ s

Z
N

0

Xn

j¼1

#f1pipn: yiABðyj ; rÞ; iajg
 !

dr

r1þs
:
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Taking E ¼ Sd�1 ðdX3Þ it can be proved via standard equilibrium techniques that

F-Fekete points on the sphere for the Riesz kernel Fðx; yÞ ¼ jx � yj�s are
asymptotically distributed according to the surface measure, provided sod � 1:
For sXd � 1 these techniques fail, essentially due to the fact that there is no measure

on Sd�1 with finite Riesz s-energy. Using precise asymptotics for the minimal discrete
energy [16] it is possible to prove equidistribution in the case s ¼ d � 1 [4,10].
However, yet there is no proof for the case s4d � 1; even though mathematicians
believe and physicists know that the corresponding extremal points need to be
asymptotically equidistributed.

In a series of papers, Wagner has established upper and lower bounds for energies
and potentials in various configurations [24–26]. By means of (2) and (3) one can find
lower bounds for the discrete Riesz energy of points in terms of solutions to certain
extremal problems. We illustrate this in what follows.

For r40 consider the extremal problem:

Minimize Frðx1;y; xnÞ ¼
Pn
j¼1

#f1pipn: xiABðxj; rÞ; iajg

subject to x1;y; xnASd�1:

One may read this extremal task as follows: Suppose there are n inimical dictators on
a planet that push the red button if the other is in the range of their missiles.
Minimize the number of conflicts, given that all missiles have the same maximal
range r (cf. [23] for a similar interpretation of the best packing problem). From
Proposition 7, we immediately have

Corollary 8.

inf
y1;y;ynASd�1

Xn

i;j¼1
iaj

1

jyi � yj js

Xs

Z
N

0

inf
x1;y;xnASd�1

Frðx1;y; xnÞ
� �

dr

r1þs
:

We conclude this section with an observation concerning F-Fekete points on the

unit circle E ¼ S1: To this end, denote by dðx; yÞ the distance between xAS1 and

yAS1; measured in terms of arclength.

Proposition 9. Suppose F is a function of arclength on S1; i.e.,

Fðx; yÞ ¼ fðdðx; yÞÞ ðx; yAS1Þ:

If f is decreasing and convex in ½0; p�; then the nth roots of unity are F-Fekete points on

S1: If, in addition, f is strictly convex in ½0; 2p=n�; then nth F-Fekete points on S1 are

unique up to rotation.
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Proof. Denote by G ¼ fz1 ¼ e2pi0;y; zn ¼ e2pi
n�1

n g; the group of nth roots of unity.
Fix 1pkpn � 1 and consider the transitive group action

ck : G-G; g/ei2pk
ng:

Then G is the union of mutually disjoint orbits U
ðkÞ
1 ;y;U

ðkÞ
nk

; which are invariant

under ck: ckðU
ðkÞ
i Þ ¼ U

ðkÞ
i ; i ¼ 1;y; nk: Note that each U

ðkÞ
i consists of n=nk

elements.

Let x1;y; xn be any points on S1; w.l.o.g. ordered in such a way that xiþ1 is a
neighbor of xi: For sake of notation, define the auxiliary function F on G by

FðziÞ ¼ xi ði ¼ 1;y; nÞ:
Rearranging the summation and taking into account the convexity of f;

1

2

Xn

i;j¼1
iaj

Fðxi; xjÞ ¼
X½n=2�
k¼1

Xnk

l¼1

X
zAU

ðkÞ
l

FðFðzÞ;FðckðzÞÞÞ

¼
X½n=2�
k¼1

Xnk

l¼1

n

nk

X
zAU

ðkÞ
l

nk

n
fðdðFðzÞ;FðckðzÞÞÞÞ

X

X½n=2�
k¼1

Xnk

l¼1

n

nk

f
nk

n

X
zAU

ðkÞ
l

dðFðzÞ;FðckðzÞÞÞ

0
B@

1
CA; ð8Þ

where ½t� stands for the largest integer less than or equal to t: Now,X
zAU

ðkÞ
l

dðFðzÞ;FðckðzÞÞÞp
X

zAU
ðkÞ
l

dðz;ckðzÞÞ: ð9Þ

Moreover,
nk

n

X
zAU

ðkÞ
l

dðz;ckðzÞÞ ¼ dðx;ckðxÞÞ ðxAU
ðkÞ
l Þ: ð10Þ

Using (9), the monotonicity of f; and (10) we can continue (8) to

1

2

Xn

i;j¼1
iaj

Fðxi; xjÞX
X½n=2�
k¼1

Xnk

l¼1

X
xAU

ðkÞ
l

fðdðx;ckðxÞÞÞ ¼
1

2

Xn

i;j¼1
iaj

Fðzi; zjÞ:

If f is strictly convex in ½0; 2p=n�; then the inequality in (8) is strict, unless all
arclength distances dðFðziÞ;Fðc1ðziÞÞÞ are the same. The latter can only occur in the
case of rotated nth roots of unity. &

Corollary 10. Let r40: The nth roots of unity are F-Fekete points for the kernel

Fðx; yÞ ¼ lðBðx; rÞ-Bðy; rÞÞ ðx; yASÞ: ð11Þ
For rXsinðp=nÞ; the Fekete points for this kernel are unique (up to rotation).
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Note that the kernel from Corollary 10 appears as the integrand in (1). The
assertion of the following two immediate consequences of Proposition 9 were
previously established in [1, Cor.2.1].

Corollary 11. Let s40: The nth roots of unity are the (up to a rotation unique) F-
Fekete points for the Riesz kernel

Fðx; yÞ ¼ 1

jx � yjs ðx; yASÞ:

Corollary 12. The nth roots of unity are the (up to a rotation unique) F-Fekete points

for the logarithmic kernel

Fðx; yÞ ¼ log
1

jx � yj ðx; yASÞ:

8. Estimates for energy in terms of discrepancy

It has been established that—under certain restrictions—small Newtonian
ðdX3; s ¼ d � 2Þ or logarithmic ðd ¼ 2Þ energy of a signed measure m� n
guarantees that the two masses m and n are not too far from each other from the
point of view of some uniform distance supjmðBÞ � nðBÞj based on a collection of
relevant test sets BAB; i.e., from the point of view of discrepancy [2,12,14,15]. This
insight can be used to give quantitative results on zero distributions arising in
polynomial approximation [2].

The purpose of this section is to establish a converse relation, namely, in what
sense small discrepancy implies small Riesz energy.

In general, different choices of classes of test sets result in notions of discrepancy
which may have quite different behavior [19]. Here, motivated by (4), which actually
states that the energy is some (non-uniform) square-integral discrepancy, we take as
the collection of test sets the homethetic, i.e., rotated, dilated, and translated, images

of one fixed set KCRd ; which is bounded and of positive Lebesgue measure.

Definition. Let m and n be measures on Rd : We call the quantity

DK ½m; n� :¼ supfjðm� nÞðz þ rUðKÞÞj: zARd ; r40; UASOðdÞg

the (homothetic) discrepancy between m and n; based on K :

Remark. This concept of discrepancy can also serve to estimate the error in
multivariate integration in terms of continuity or smoothness properties of the
integrand [9].

If K ¼ Bð0; 1Þ; this notion coincides with ball discrepancy [5], and we write
Dball½m; n� :¼ DBð0;1Þ½m; n�:
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Suppose m and n are unit measures on Rd with support contained in a compact set,
say, M: It is clear that in order to estimate Riesz energy in terms of discrepancy one
needs to impose restrictions on the masses’ densities. We will do this by assuming
that there exist b4s and cX1 such that

sup
xARd

ðmþ nÞðBðx; rÞÞpcrb ðr40Þ: ð12Þ

Such an assumption guarantees finite s-energy as can be seen from the following
remark, which is also of independent interest.

Lemma. Let s40: Suppose r1; r2 are finite measures, and set

jðrÞ :¼ sup
xARd

r1ðBðx; rÞÞ ðr40Þ:

If
R 1

0
jðrÞ
r1þs droN; then r1 and r2 have finite mixed s-energy Es½r1; r2�:

Proof. From Proposition 2,

Es½r1; r2� ¼ s

Z
N

0

Z
r1ðBðx; rÞÞ dr2ðxÞ

dr

r1þs

p sr2ðRdÞ
Z 1

0

jðrÞ dr

r1þs
þ r1ðRdÞ

Z
N

1

dr

r1þs

� �
oN: &

We start by estimating Riesz energy in terms of ball discrepancy.

Proposition 13. Suppose m and n are unit measures on Rd satisfying (12). Then

Esðm� nÞp 2b
b� s

cs=bDball½m; n�1�s=b:

We remark that the dependence of this estimate on the dimension d is implicitly
given by assumption (12). In particular, for sXd no such b exists.

Proof. Let d40: By (5) and (12),

Esðm� nÞp s

Z
N

0

Z
ðm� nÞðBðx; rÞÞ dðm� nÞðxÞ

����
���� dr

r1þs

p 2 s

Z d

0

crb
dr

r1þs
þ 2s

Z
N

d
Dball½m; n�

dr

r1þs

¼ 2c
s

b� s
db�s þ 2d�sDball½m; n�:

Inserting d :¼ ðDball½m; n�=cÞ1=b gives the desired estimate. &
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Remark. With the same method, it is possible to derive estimates for the logarithmic
energy of a signed measure in terms of discrepancy. If m and n are unit measures with
(12) and compact support, then the logarithmic energy

Elogðm� nÞ :¼
Z Z

1

jx � yj dðm� nÞðxÞ dðm� nÞðyÞ

can also be written in the form

Elogðm� nÞ ¼
Z

N

0

Z
ðm� nÞðBðx; rÞÞ dðm� nÞðxÞ

� �
dr

r
:

If, say, the support of the measures satisfies MCBð0; 1=2Þ; for 0odp1;

Elogðm� nÞp2c
db

b
þ 2Dball½m; n� log

1

d
:

Setting d :¼ ðDball½m; n�=cÞ1=b gives

Elogðm� nÞp2
Dball½m; n�

b
1þ log

c

Dball ½m; n�

� �
:

We illustrate the sharpness of Proposition 13 with the following

Example. Let nAN; say n42 odd. Consider the nth roots of unity zj on S1 (see the

proof of Proposition 9), and set Ij ¼ fzAS1: dðz; zjÞp2p
4n
g: Look at the unit measures

mn :¼ 2
Xn

j¼1

sjIj
; n ¼ s:

Then mn � n ¼ m�n � n�n; where the positive measures

m�n ¼
Xn

j¼1

sjIj
; n�n ¼ s�

Xn

j¼1

sjIj

have complementary support. Moreover, n�n is the image of m�n under a rotation by an

angle 2p
2n
: In particular,

Esðm�nÞ ¼ Esðn�nÞ ð0oso1Þ: ð13Þ

We will now show that for some constant g140 independent of n;

Es½m�n � n�n; m
�
n�Xg1

1

n

� �1�s

: ð14Þ

Then, by virtue of (13),

Esðmn � sÞ ¼ Esðm�n � n�nÞ ¼ 2Esðm�nÞ � 2Es½m�n; n�n�

X 2g1
1

n

� �1�s

¼ 2g1ðDball½mn; s�Þ1�s:
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Since mþ n ¼ mn þ s satisfies (12) with b ¼ 1; this establishes the sharpness of
Proposition 13 with respect to the exponent to which the discrepancy is raised.

In order to establish (14), let xAIj and introduce d ¼ dðxÞA½0; 2p
4n
� via dðx; zjÞ ¼

2p
4n
� d: Moreover, write Bðx; rÞ-S ¼ fzAS1: dðx; zÞoag; more precisely, a ¼ aðrÞ ¼

2 arcsinðr=2Þ: Now,

gnðr; xÞ :¼ ðmn � n�nÞðBðx; rÞÞ ¼

0; if r ¼ a ¼ 0;

2d=ð2pÞ; if a ¼ d;

2d=ð2pÞ; if a ¼ 2p
2n
� d;

�2d=ð2pÞ; if a ¼ 2p
2n
þ d;

�2d=ð2pÞ; if a ¼ 4p
2n
� d;

2d=ð2pÞ; if a ¼ 4p
2n
þ d;

^; ^

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

and this function is linear (in a) in between these knots (cf. Fig. 1).
Now,

Esðm�n � n�nÞ ¼ s

Z Z
N

0

gnðr; xÞ dr

r1þs
dm�nðxÞ: ð16Þ

By (15),Z
N

0

gnðr; xÞ dr

r1þs
¼
XN
i¼1

Z a¼ðiþ1Þp
n

a¼i
p
n

jgnðr; xÞj dr

r1þs
�
Z a¼ðiþ2Þp

n

a¼ðiþ1Þp
n

jgnðr; xÞj dr

r1þs

( )
;

ð17Þ

where we note that the sum on the right-hand side is only formally ‘‘infinite’’. It
follows from (17) and (15) thatZ

N

0

gnðr; xÞ dr

r1þs
X0;

Fig. 1. gnðr;xÞ:
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and, for (say) p
4n
pdp p

3n
;

Z
N

0

gnðr; xÞ dr

r1þs
X

Z a¼2p
n

0

gnðr;xÞ
1

r1þs
� 1

a1þs

� �
dr þ 0þ?

X g2

Z a¼ p
2n

n

a¼d
2d

dr

r1þs
Xg3d

1�s
Xg4

1

n

� �1�s

with g2; g3; g440 independent of n: Integrating this inequality against dm�nðxÞ it

follows that (see (16)),

Esðm�n � n�n; m
�
nÞXg1

1

n

Xn

j¼1

1

n

� �1�s

;

which we were supposed to show. &

Remark. It is established in Hüsing [13] that the logarithmic energy of a signed
measure is—roughly stated—bounded from below by the square of the discrepancy,
and that such estimates are sharp from various points of view. The previous
considerations point out that such a lower bound is not attained in canonic
examples. This gives some explanation why it is not possible to obtain sharp
quantitative estimates for the zero distribution of certain extremal polynomials, e.g.,
Fekete-polynomials, via energy-techniques. More refined methods have to be used
[2].

If the concept of discrepancy is not based on balls, but on the homothetic images
of some fixed set K ; then the method to derive upper bounds for energy has to be
modified:

In what follows, c1; c2;y denote positive constants, depending at most on K ; d; c;
and M: Let 1Xd40: A precise value for d will be specified later. By (4),

CðK ; s; dÞ�1
Esðm� nÞ

¼
Z d

0

þ
Z 1

d
þ
Z

N

1

� �Z
SOðdÞ

Z
Rd

½ðm� nÞðz þ rUðKÞÞ�2 dldðxÞ dHðUÞ dr

rdþ1þs

¼: I1ðdÞ þ I2ðdÞ þ I3: ð18Þ

Now, since

ldððx þ rUðKÞÞ-ðy þ rUðKÞÞÞ
¼ 0; if jx � yjX2 diamðKÞr;
pldðKÞrd ; otherwise;

(
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and taking into account (12), it follows that

I1ðdÞ ¼
Z d

0

Z
SOðdÞ

Z Z
ldððx þ rUðKÞÞ-ðy þ rUðKÞÞÞ


 dðm� nÞ dðm� nÞ dHðUÞ dr

rdþ1þs

p
Z d

0

Z Z
jx�yjpc2r

c1rd dðmþ nÞðyÞ dðmþ nÞðxÞ dr

rdþ1þs

p
c3

b� s
db�s: ð19Þ

Moreover, since

½ðm� nÞðz þ rUðKÞÞ�2
¼ 0; if jzjXdiamðMÞ þ diamðKÞr;
pDK ½m; n�2; otherwise;

(

we have

I2ðdÞp
Z 1

d

Z
jzjpc4

DK ½m; n�2 dldðzÞ dr

rdþ1þs

p
c5

d þ s
d�d�s DK ½m; n�2: ð20Þ

In addition,

I3p
Z

N

1

Z
jzjpc5r

DK ½m; n�2 dldðzÞ dr

rdþ1þs

p
c6

s
DK ½m; n�2: ð21Þ

Combining (18)–(21) it follows that

Esðm� nÞpc7
db�s

b� s
þ d�d�s

d þ s
DK ½m; n�2 þ

1

s
DK ½m; n�2

 !
:

Inserting d :¼ DK ½m; n�2=ðbþdÞ we arrive at

Proposition 14. Suppose n and m are unit measures with support in a compact set M;
satisfying (12) with b4s: Then there exists a constant C0 ¼ C0ðK ;M; c; b; s; dÞ such

that

Esðm� nÞpC0DK ½m; n�
2
b�s
dþb:

Remark. Suppose that in the situation of Proposition 14 the support of the measures
m and n is such that

ldðfxARd j distðx;MÞprgÞpc8rp ð0orp1Þ
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as, for instance, in the case when m and n are concentrated on a sufficiently smooth,

closed, bounded, ðd � pÞ-dimensional hypersurface in Rd : Then ðm� nÞðz þ
rUðKÞÞ ¼ 0 if distðz;MÞXc8rp and, therefore, the estimate for I2ðdÞ can be improved
to

I2ðdÞp
Z 1

d

Z
distðz;MÞpc8rp

DK ½m; n�2 dldðzÞ dr

rdþ1þs

p
c9

d þ s � p
d�d�sþpDK ½m; n�2:

Thus, with d :¼ DK ½m; n�2=ðbþd�pÞ;

Esðm� nÞpC1DK ½m; n�
2

b�s
ðd�pÞþb;

where C1 ¼ C1ðK ;M; c; b; s; d; pÞ:

References

[1] R. Alexander, K.B. Stolarsky, Extremal problems of distance geometry related to energy integrals,

Trans. Amer. Math. Soc. 193 (1974) 1–31.

[2] V.V. Andrievskii, H.-P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation,

Springer, Heidelberg, 2001.

[3] J. Cui, W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Comput. 18 (1997) 595–609.

[4] S.B. Damelin, P.J. Grabner, Energy functionals, numerical integration and asymptotic equidistribu-

tion on the sphere, J. Complexity, available online 10 December 2002.

[5] M. Drmota, R.F. Tichy, Sequences, Discrepancies and Applications, in: Lecture Notes in

Mathematics, Vol. 1651, Springer, Berlin, 1997.

[6] C. Fefferman, R. De la Llave, Relativistic stability of matter—I, Rev. Mat. Iberoamericana 2 (1986)

119–160.
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[10] M. Götz, E.B. Saff, Note on d-extremal configurations for the sphere in Rdþ1; Int. Ser. Num. Math.

137 (2001) 159–162.

[11] P.J. Grabner, R.F. Tichy, Spherical designs, discrepancy and numerical integration, Math. Comp. 60

(1993) 327–336.
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